skip to main content


Search for: All records

Creators/Authors contains: "Sharon, C. E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Recent studies have suggested that red quasars are a phase in quasar evolution when feedback from black hole accretion evacuates obscuring gas from the nucleus of the host galaxy. Here, we report a direct link between dust-reddening and molecular outflows in quasars at z ∼ 2.5. By examining the dynamics of warm molecular gas in the inner region of galaxies, we find evidence for outflows with velocities 500–1000 km s−1 and time-scales of ≈0.1 Myr that are due to ongoing quasar energy output. We infer outflows only in systems where quasar radiation pressure on dust in the vicinity of the black hole is sufficiently large to expel their obscuring gas column densities. This result is in agreement with theoretical models that predict radiative feedback regulates gas in the nuclear regions of galaxies and is a major driving mechanism of galactic-scale outflows of cold gas. Our findings suggest that radiative quasar feedback ejects star-forming gas from within nascent stellar bulges at velocities comparable to those seen on larger scales, and that molecules survive in outflows even from the most luminous quasars.

     
    more » « less
  2. Abstract The high-frequency radio sky has historically remained largely unexplored due to the typical faintness of sources in this regime, and the modest survey speed compared to observations at lower frequencies. However, high-frequency radio surveys offer an invaluable tracer of high-redshift star formation, as they directly target the faint radio free–free emission. We present deep continuum observations at 34 GHz in the COSMOS and GOODS-North fields from the Karl G. Jansky Very Large Array (VLA), as part of the COLD z survey. The deep COSMOS mosaic spans down to σ = 1.3 μ Jy beam −1 , while the wider GOODS-N observations cover to σ = 5.3 μ Jy beam −1 . We detect a total of 18 galaxies at 34 GHz, of which nine show radio emission consistent with being powered by star formation; although for two sources, this is likely due to thermal emission from dust. Utilizing deep ancillary radio data at 1.4, 3, 5, and 10 GHz, we decompose the spectra of the remaining seven star-forming galaxies into their synchrotron and thermal free–free components, and find typical thermal fractions and synchrotron spectral indices comparable to those observed in local star-forming galaxies. We further determine free–free star formation rates (SFRs), and show that these are in agreement with SFRs from spectral energy distribution-fitting and the far-infrared/radio correlation. Our observations place strong constraints on the high-frequency radio emission in typical galaxies at high redshift, and provide some of the first insights into what is set to become a key area of study with future radio facilities, such as the Square Kilometer Array Phase 1 and next-generation VLA. 
    more » « less